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ABSTRACT
K-clique counting is a fundamental problem in network analysis

which has attracted much attention in recent years. Computing

the count of k-cliques in a graph for a large k (e.g., k = 8) is often

intractable as the number of k-cliques increases exponentially w.r.t.

(with respect to) k . Existing exact k-clique counting algorithms

are often hard to handle large dense graphs, while sampling-based

solutions either require a huge number of samples or consume very

high storage space to achieve a satisfactory accuracy. To overcome

these limitations, we propose a new framework to estimate the num-

ber of k-cliques which integrates both the exact k-clique counting
technique and two novel color-based sampling techniques. The key

insight of our framework is that we only apply the exact algorithm

to compute the k-clique counts in the sparse regions of a graph,

and use the proposed sampling-based techniques to estimate the

number of k-cliques in the dense regions of the graph. Specifically,
we develop two novel dynamic programming based k-color set sam-

pling techniques to efficiently estimate the k-clique counts, where a
k-color set contains k nodes with k different colors. Since a k-color
set is often a good approximation of a k-clique in the dense regions

of a graph, our sampling-based solutions are extremely efficient and

accurate. Moreover, the proposed sampling techniques are space

efficient which use near-linear space w.r.t. graph size. We conduct

extensive experiments to evaluate our algorithms using 8 real-life

graphs. The results show that our best algorithm is at least one

order of magnitude faster than the state-of-the-art sampling-based

solutions (with the same relative error 0.1%) and can be up to three

orders of magnitude faster than the state-of-the-art exact algorithm

on large graphs.

CCS CONCEPTS
• Networks → Data path algorithms; • Theory of computa-
tion→ Randomness, geometry and discrete structures.
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1 INTRODUCTION
Real-life networks, such as social networks, web graphs, and biolog-

ical networks, often contain frequently-occurring small subgraph

structures. Such frequent small subgraphs are referred to as net-

work motifs [31]. Counting the motifs is a fundamental tool in

many network analysis applications, including social network anal-

ysis, community detection, and bioinformatics [10, 18, 31, 35, 38].

Perhaps the most elementary motif in a graph is the k-clique which
has been widely used in a variety of network analysis applications

[7, 10, 31, 39, 42].

Given a graph G, a k-clique is a complete subgraph of G with k
nodes. Counting the k cliques in a graph has found many important

applications in dense subgraph mining and social network analysis.

For example, Sariyüce et al. [37] proposed a nucleus decomposition

method to find the hierarchy of dense subgraphs, which uses the

k-clique counting operator as a basic building block. Tsourakakis
[42] studied a k-clique densest subgraph problem which also uses

the k-clique counting operator as a building block. Additionally, the
k-clique counting operator has also been applied to detect higher-

order organizations in social networks [6, 45].

Motivated by the above applications, many practical k-clique
counting algorithms have been proposed [2, 13, 15, 19, 23, 24, 28,

29, 36]. Existing k-clique counting algorithms can be classified into

(1) exact k-clique counting methods, and (2) sampling-based ap-

proximation solutions. Chiba and Nishizeki [13] developed the first

exact k-clique counting algorithm based on k-clique enumeration

which is very efficient on real-life sparse graphs for a small k . Such
an algorithm was recently improved by Finocchi et al. [19] based

on a degree ordering technique. Subsequently, Danisch et al. [15]

further improved this algorithm by using a degeneracy ordering

technique [30]. More recently, Li et al. [28] developed a further

improved algorithm based on a hybrid of degeneracy and color

ordering technique. All these exact k-clique counting algorithms

are based on k-clique enumeration, which are typically intractable

on large graphs for a large k (e.g., k ≥ 8) due to combinatorial
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explosion. To overcome this issue, Jain and Seshadhri developed

an elegant algorithm, called PIVOTER, based on a classic pivoting

technique which was widely used for pruning the search branches

in maximal clique enumeration [41]. The key idea of PIVOTER is

that it can implicitly construct a succinct clique tree (SCT) by us-

ing the pivoting technique in the search procedure. Such a SCT

structure maintains a unique representation of all k-cliques, but its
size is much smaller than the number of k-cliques. PIVOTER was

shown to be much faster than previous k-clique enumeration based

algorithms [13, 15, 19, 28, 29].

Although PIVOTER is often very efficient for handling real-life

sparse graphs, it may still have a very deep recursion tree when

processing the dense regions of the graph, which is the main bottle-

neck of the PIVOTER algorithm. Moreover, PIVOTER is based on

the idea of enumeration of maximal cliques to count the k-cliques.
It is often not very fast on the dense regions of the graph, because

the dense regions of the graph may contain many maximal cliques

(with complicated overlap relationships), resulting in a large search

tree of Pivoter (e.g., see the results on the LiveJournal dataset in
[24]).

Approximation solutions based on sampling are typically able

to handle large dense graphs when k is not very large [9, 23, 36].

However, to achieve a desired accuracy, previous sampling-based

solutions either require a huge number of samples [26, 36, 44] or

consume very high storage space [2, 8, 9, 23] for a relatively large

k (e.g., k ≥ 8). The state-of-the-art sampling-based approxima-

tion algorithm is the TuranShadow algorithm which was proposed

by Jain and Seshadhri [23]. As shown in [23], TuranShadow is

much faster and more accurate than the other sampling-based al-

gorithms. The main limitation of TuranShadow is that it needs to

take O(nα (k−1) +m) time and O(nα (k−2)) space to construct a data

structure called Tuŕan Shadow for sampling, whereα denotes the ar-

boricity of the graph [13]. Therefore, on large graphs, TuranShadow
is very costly for a large k .

To overcome the limitations of the state-of-the-art algorithms,

we propose a new framework to estimate the number of k-cliques
in a graph which integrates both the exact PIVOTER algorithm

and two newly-developed sampling-based techniques. Our frame-

work is based on a simple but effective observation: PIVOTER is

extremely efficient to compute the number of k-cliques in the sparse
regions of the graph, while sampling-based solutions are often very

efficient and accurate to estimate the k-clique counts in the dense
regions of a graph. Base on this crucial observation, we can first

partition the graph into sparse and dense regions. Then, for the

sparse regions, we invoke PIVOTER to exactly compute the k-clique
counts. For the dense regions, we propose two novel sampling tech-

nique based on a concept of graph coloring [3] to estimate the

k-clique counts. Specifically, we first present a new concept called

k-color set which denotes a set of k nodes with k different colors.

Then, we propose a dynamic programming (DP) based k-color set
sampling algorithm to estimate the k-clique counts. Since a k-color
set is typically a good approximation for a k-clique in the dense

regions of a graph, our algorithm is extremely efficient and accu-

rate. In addition, we also propose a DP-based k-color path sampling

technique to further improve the efficiency and accuracy. Here a

k-color path is a connected k-color set which is more effective to

approximate a k-clique. Moreover, unlike TuranShadow, both of

our sampling-based solutions take near-linear space w.r.t. the graph

size. In summary, we make the following contributions.

New algorithmic framework. We propose a new algorithmic

framework for estimating k-clique counting which can circumvent

the defects of the existing exact and approximation algorithms. We

show that our framework is extremely efficient and accurate. It can

achieve a 10
−5

relative error by sampling a reasonable number of

samples.

Two novel sampling algorithms. We develop two DP-based k-
color set sampling techniques to estimate the number of k-cliques
in the dense regions of the graph. Our novelty is in the algorithmic

use of classic graph coloring technique for sampling. The striking

features of our techniques are that they are not only very efficient

and accurate, but also use near-linear space w.r.t. the graph size.

Extensive experiments. We evaluate our algorithms on 8 large

real-life graphs. The results show that (1) our best algorithm is at

least one order of magnitude faster than the state-of-the-art approx-

imate algorithm (TuranShadow) to achieve a 0.1% relative error, us-

ingmuch smaller space; and (2) it can be up to three orders of magni-

tude faster than the state-of-the-art exact algorithm (PIVOTER) on
large graphs. For example, on the hardest dataset LiveJournal with
k = 8, TuranShadow takes more than 120 seconds and PIVOTER
cannot terminate within 5 hours, while our best algorithm con-

sumes around 20 seconds to achieve a 0.1% relative error. Moreover,

our algorithms also exhibit an excellent parallel performance which

can achieve 12× ∼ 14× speedup ratios when using 16 threads in

our experiments. For reproducibility purpose, the source code of

this paper is released at https://github.com/LightWant/dpcolor.

2 PRELIMINARIES
Let G = (V ,E) be an undirected graph, where V and E denotes the

set of nodes and edges respectively. Let n and m be the number

of nodes and edges of G respectively. Denote by Nv (G) the set of
neighbors of v in G. The degree of v , denoted by dv (G), is the size
of the neighbor set of v , i.e., dv (G) = |Nv (G)|. Given a subset S
of V , we denote by G(S) = (VS ,ES ) the subgraph of G induced

by S , where ES = {(u,v) ∈ E |u,v ∈ S}. A k-clique is a complete

subgraph of G in which every pair of nodes is connected by an

edge.

Given a graphG and an integer k , the k-clique counting problem
is to compute the number of k-cliques in G. Practical algorithms

for solving the k-clique counting problem are often based on some

ordering-based heuristic techniques [15, 23, 24, 28].

Let π : V → {v1, ...,vn } be a total order of the nodes in G. For
two nodes u and v of G, we say that π (v) < π (u) if u comes after

v in the ordering of π . Then, based on such an ordering, we can

obtain a DAG (directed acyclic graph) ®G by orienting the edges of

the undirected graphG . Specifically, for each undirected edge (u,v)

inG , we obtain a directed edge (u,v) in ®G if π (u) < π (v), otherwise
we get a directed edge (v,u). The k-clique counting problem inG

is equivalent to computing the number of k-cliques in ®G. Existing

k-clique counting algorithms that work on the DAG ®G (instead

of the original graph G) can guarantee that each k-clique is only
explored once, thus significantly improving the efficiency.
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Algorithm 1: The Proposed Framework

Input: A graphG = (V , E), an integer k , and the sample size t
Output: The number of k -cliques inG

1 ®G ← the DAG generated by the degeneracy ordering ofG ;

2 ans ← 0; S ← ∅;
3 foreach v ∈ V do
4 if ¯d (G(Nv ( ®G))) < k then ans ← ans + PIVOTER(Nv ( ®G), k − 1);

5 else S ← S ∪ {v };

6 return ans + Sampling( ®G, S, k, t );

Note that many different ordering heuristics for k-clique count-
ing have been developed in the literature [28]. Among them, a

widely-used ordering heuristics is the degeneracy ordering [30],

where the degeneracy is a metric to measure the sparsity of a graph

[12]. Specifically, the degeneracy ordering of nodes in G is defined

as an ordering {v1, ...,vn } such that the degree ofvi is minimum in

the subgraph of G induced by {vi , ...,vn } for each vi in G. We can

make use of a classic peeling algorithm to generate the degeneracy

ordering in O(m + n) time [4]. Let δ be the degeneracy of G. Then,

we can easily derive that dv ( ®G) ≤ δ . Since δ is often very small in

real-world graphs [12, 30], the degeneracy ordering based k-clique
counting algorithms are often very efficient in practice [28]. In

this work, we will also use the degeneracy ordering to design our

algorithms.

3 THE PROPOSED FRAMEWORK
In this section, we propose a new algorithmic framework to estimate

the number of k-cliques which combines both the exact PIVOTER
algorithm and the sampling-based algorithms. The key idea of our

framework is based on a simple but effective observation. The

PIVOTER algorithm often works very efficient in the sparse regions
of the graph, in which the number of k-cliques is typically not very

large. However, in the dense regions of the graph, PIVOTER may be

very costly to compute the k-clique counts, as the dense regions of
the graph may contain a huge number of k-cliques. On the contrary,

the sampling-based solutions are often very efficient and accurate

to estimate the number of k-cliques in the dense regions of the

graph, but they generally perform very bad in the sparse regions

of the graph. This is because the k-cliques are relatively easier to

be sampled in the dense regions, but they are often very hard to be

drawn from the sparse regions of the graph. Therefore, to overcome

the limitations of both the exact and sampling algorithms, we can

apply the exact PIVOTER algorithm to calculate the k-clique counts
in the sparse regions of the graph, and use the sampling-based

techniques to estimate the number of k-cliques in the remaining

dense regions of the graph. The details of our framework is shown

in Algorithm 1.

Note that in Algorithm 1, we make use of the average degree of

the nodes in the subgraph C = (VC ,EC ) of G, denoted by
¯d(VC ) =∑

v ∈VC dv (C)/|VC |, as an indicator to measure the sparsity of C .

We refer to a subgraph C of G as a dense subgraph of G if
¯d(VC ) ≥

k (i.e., it lies in the dense regions of G), otherwise it is called a

sparse subgraph. In Algorithm 1, it first computes a DAG ®G by the

degeneracy ordering ofG (line 1). LetNv ( ®G) be the out-neighbors of

a node v in ®G , andG(Nv ( ®G)) be the subgraph induced by Nv ( ®G) in

G . If the average degree ofG(Nv ( ®G)) is smaller thank , the algorithm
invokes PIVOTER to exactly compute the number of (k − 1)-cliques

contained in Nv ( ®G) (line 4). Otherwise, the subgraph G(Nv ( ®G)) is
considered as a dense region ofG , and the (k − 1)-cliques contained

in Nv ( ®G) are estimated by a sampling algorithm (lines 5-6).

The remaining question is how can we devise an efficient and

effective sampling algorithm to estimate the number of k-cliques in
the dense regions ofG . Traditional edge sampling algorithms, such

as [36, 43], are often inefficient, because those algorithms require a

considerable number of samples to achieve a desired accuracy [23].

The color-coding based techniques often consume a significant

number of space [2, 8, 9] and also they are less efficient than the

TuranShadow algorithm [23]. The TuranShadow algorithm [23],

which is the state-of-the-art sampling-based technique, also needs

much space to store the Tuŕan Shadow. Moreover, the construc-

tion time of the Tuŕan Shadow is often very long for large graphs,

because the worst-case time complexity of TuranShadow is expo-

nential. In Sections 4 and 5, we will propose two novel sampling

algorithms to tackle this problem.

Parallel implementation. Note that the proposed framework

(Algorithm 1) can be easily parallelized, because the number of

k-cliques in the subgraph induced by the out-neighbors for each

node in ®G is independent. Specifically, in lines 3-5 of Algorithm 1,

we can process the nodes in the sparse regions in parallel by inde-

pendently invoking the PIVOTER algorithms. In the dense regions,

the sampling-based techniques are also easily to be parallelized,

because we can always draw t independent samples in parallel. In

our experiments, we will show that our parallel implementations

can achieve a near-linear speedup ratio on real-life graphs.

4 K-COLOR SET SAMPLING
In this section, we develop a novel sampling approach to estimate

the k-clique counts in the dense regions of the graph, called k-color
set sampling. Our technique is based on a concept of graph coloring

[3, 21, 46]. Specifically, we first color the nodes in a graph such that

each pair of adjacent nodes are colored with different colors. Let χ
be the number of colors that are used to color all nodes in the graph

G. The graph coloring procedure assigns an integer color value

taking from [1, · · · , χ ] to each node in G, and no two adjacent

nodes have the same color value. Note that since the minimum

coloring problem (χ is minimum) is NP-hard [3], we use a linear-

time greedy coloring algorithm [21, 46] to obtain a feasible coloring

solution. Based on a feasible coloring solution, we define a concept

called k-color set as follows.

Definition 4.1. A set of nodes Vk in the colored graphG is called

a k-color set if it contains k nodes with k different colors.

Note that by Definition 4.1, the nodes of any k-clique must form

a k-color set. In particular, we have the following lemma.

Lemma 4.2. Given a graph G, all k-cliques must be contained in
the set of all k-color sets.

Let cntk (G, clique) and cntk (G, color ) be the number ofk-cliques
and k-color sets of G respectively. Denoted by ρk the k-clique
density of a graph G which is defined as the ratio between the

number of k-cliques and the number of k-color sets of G, i.e., ρk =
cntk (G,clique)
cntk (G,color )

. Intuitively, in the dense regions of the graph G, a k-

color set is likely to be a k-clique. Therefore, the k-clique density ρk
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of the dense region of G is often not very small. As a consequence,

an effective sampling technique to estimate the number of k-cliques
can be obtained by estimating ρk .

There are two nontrivial problems needed to be tackled to de-

velop such a sampling technique. First, we need to devise an ef-

ficient algorithm to compute the number of k-color sets. Second,
to estimate ρk , we need to develop a uniform sampling mecha-

nism to sample the k-color sets. Below, we will propose a dynamic

programming algorithm to solve these issues.

4.1 DP-based k-color set sampling
Here we first propose a DP algorithm to compute the number of k-
color sets. Then, we show how to use the DP algorithm to uniformly

sample a k-color set.

Counting the number of k-color sets. Let χ be the number of

colors of the graph G obtained by the greedy coloring algorithm

[21, 46]. Denote by ai the number of nodes in G with the color

i ∈ [1, χ ]. LetGi be the subgraph ofG that only contains the nodes

of G with color values no larger than i , i.e., Gi = (Vi ,Ei ), where
Vi = {v ∈ V |c(v) ≤ i}, Ei = {(u,v) ∈ E |u,v ∈ Vi }, and c(v) is the
color value of v in G . Let F (i, j) be the number of j-color sets in Gi .

Then, we have the following recursive function for all i, j ∈ [1, χ ].

F (i, j) = ai × F (i − 1, j − 1) + F (i − 1, j). (1)

The key idea of Eq. (1) is that the number of j-color sets inGi can be

derived by considering two cases: (1) the color i is included in the

j-color sets; and (2) the color i is not included in the j-color sets. For
the first case, the number of j-color sets in Gi is equal to ai times

the number of (j − 1)-color sets inGi−1, i.e., ai × F (i − 1, j − 1). For

the second case, the number of j-color sets is equal to the number

of j-color sets in Gi−1, which is F (i − 1, j). Thus, the total number

of j-color sets in Gi is the sum over these two cases. Clearly, the

number of k-color sets inG is equal to the number of k-color sets in
Gχ , i.e., F (χ ,k). In addition, the initial states of F (i, j) are as follows:{

F (i, 0) = 1, for all i ∈ [0, χ ],
F (i, j) = 0, for all i ∈ [0, χ ], j ∈ [i + 1, χ ].

(2)

Based on Eqs. (1) and (2), we can compute the number of k-color
sets F (χ ,k) in O(kχ ) time by dynamic programming. The detailed

implementation of the DP algorithm can be found in the DPCount
procedure of Algorithm 2 (see lines 5-12).

From counting to uniformly sampling. Here we propose an

efficient approach to uniformly sample a k-color set based on the

k-color set counting technique. For convenience, we refer to a set

of k different colors selected from [1, χ ] as a k-color class. Clearly,
in a graph G, a k-color class may contain a set of k-color sets.

To generate a uniform k-color set, a potential method is that we

first sample a k-color class, and then we randomly select a node inG
with color i for each i in the sampled k-color class. The challenge of
this method is that how canwe sample thek-color class to guarantee
that the resulting k-color set is uniformly generated. Obviously,

the straightforward method that uniformly picks k different colors

from [1, χ ] is incorrect in our case. This is because the numbers of

k-color sets contained in various k-color classes are different. Thus,
uniformly sampling a k-color class from [1, χ ] will introduce biases
for generating a uniform k-color set.

Algorithm 2: DPSampler (G, χ ,k)
Input: A colored graphG = (V , E), an integer k , and the maximum color number χ
Output: A uniformly sampled k -color set

1 F ← DPCount(G, χ, k );

2 p(i, j ) ←
ai ×F (i−1, j−1)

F (i, j ) for all i ∈ [1, χ ] and j ∈ [1, k ];
3 R ← DPSampling(G, P, ∅, χ, k );
4 return R ;
5 Procedure DPCount(G, χ, k )
6 Let ai be the number of nodes with color i inG ;

7 F (i, j) ← 0 for all i ∈ [0, χ ] and j ∈ [i + 1, k ];
8 foreach i = 0 to χ do F (i, 0) = 1;

9 foreach i = 1 to χ do
10 for j = 1 to k do
11 F (i, j) = ai × F (i − 1, j − 1) + F (i − 1, j);

12 return F ;

13 Procedure DPSampling(G, P, R, i, j)
14 if j = 0 then return R ;
15 Sampling the color i with probability p(i, j ) ;
16 if the color i is sampled then
17 Randomly choose a node v inG with color i ;
18 DPSampling (G, P, R ∪ {v }, i − 1, j − 1);

19 else DPSampling (G, P, R, i − 1, j ) ;

To overcome this challenge, we propose a DP algorithm to sample

a k-color class which can guarantee that the resulting k-color set is
uniformly drawn. In particular, given a j-color class inGi , it either

(1) contains the color i , or (2) does not contain the color i . If the first
case is true, the other j − 1 colors of the j-color class are selected
from [1, i − 1] in Gi−1. However, for the second case, the j-color
class must be selected from [1, i − 1] in Gi−1. Therefore, we can

sample a k-color class inG based on a similar DP equation as shown

in Eq. (1). More specifically, to sample a j-color class, we define the
probability of selecting the color i in Gi as

p(i, j ) =
ai × F (i − 1, j − 1)

F (i, j)
. (3)

Clearly, the probability that does not choose the color i in Gi
is 1 − p(i, j) = F (i − 1, j)/F (i, j). Based on Eq. (3), we can sample a

j-color class using the following recursive sampling procedure. In

each recursion, we pick a color i in Gi with the probability p(i, j).
If the color i is sampled, we recursively sample the (j − 1)-color

class in Gi−1. Otherwise, we recursively sample the j-color class in
Gi−1. After obtaining a k-color class, a k-color set is generated by

randomly selecting a node with each color i in the k-color class. The
detailed implementation of our algorithm for uniformly sampling a

k-color set is shown in Algorithm 2.

Algorithm 2 first invokes the DP procedure to compute F (i, j)
for every i ∈ [1, χ ] and j ∈ [1,k] (line 1 and lines 5-12). Then, the

algorithm computes the probability p(i, j) based on Eq. (3) (line 2).

After that, the algorithm calls the recursively sampling procedure

to uniformly generate a k-color set (line 3 and lines 13-19). The

following results ensure the correctness of Algorithm 2.

Lemma 4.3. The DPSampling procedure in Algorithm 2 outputs a
k-color set of G if χ ≥ k .

Theorem 4.4. Algorithm 2 outputs a uniform k-color set.

The following theorem shows the complexity of Algorithm 2.

Theorem 4.5. Suppose that the graph G is colored and the nodes
in each color group are obtained. Then, both the time and space com-
plexity of Algorithm 2 are O(χk).
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Algorithm 3: Estimating the number of k-cliques by k-
color set sampling

Input: A graph
®G , a node set S , an integer k , and the sample size t

Output: An estimation of the number of k -cliques
1 Coloring the graph

®G using a linear-time algorithm [21, 46];

2 Let χ be the number of colors obtained;

3 foreach v ∈ S do
4 Fv ← DPCount(G(Nv ( ®G)), χ, k − 1);

5 cntKCol ←
∑
v∈S Fv (χ, k − 1);

6 Set the probability distribution D over the nodes in S where

p(v) = Fv (χ, k − 1)/cntKCol for each v ∈ S ;
7 successT imes ← 0;

8 for i = 1 to t do
9 Independently sample a node v from D ;

10 R ← {v } ∪ DPSampler(G(Nv ( ®G)), χ, k − 1);

11 if R is a k -clique then
12 successT imes ← successT imes + 1;

13 ρk ← successT imes/t ;
14 return ρk × cntKCol ;

4.2 Estimating the number of k-cliques
By Theorem 4.4, we can first make use of Algorithm 2 to uniformly

sample k-color sets from G, and then estimate the clique density

ρk in the k-color sets ofG . After that, the number of k-cliques inG
can be estimated by ρk × F (χ ,k). Based on this idea, we propose

a weighted sampling algorithm to estimate the number of cliques

in the dense regions of G. The detailed implementation of our

algorithm is shown in Algorithm 3.

Let S be a set of nodes whose neighborhood subgraphs are dense
regions of G, i.e., ¯d(G(Nv ( ®G))) ≥ k for each v ∈ S . Algorithm 3

first colors the graph using a linear-time greedy algorithm [21, 46]

(line 1). Then, the algorithm invokes the DPCount procedure to
compute the number of k-color sets for each v ∈ S (lines 3-4). Let

cntKCol be the total number of k-color sets (line 5). Then, we can
obtain a probability distribution D over S where p(v) = Fv (χ ,k −
1)/cntKCol for each v ∈ S (line 6). After that, Algorithm 3 draws

t k-color sets by (1) sampling a node v ∈ S with probability p(v)

(line 9), and (2) uniformly sampling a (k−1)-color set fromG(Nv ( ®G))
(line 10). The algorithm computes the k-clique density ρk in the

sampled k-color sets (lines 11-13), and then estimates the k-clique
count as ρk × cntKCol (line 14). The following theorem shows that

Algorithm 3 can obtain an unbiased estimator.

Theorem 4.6. Algorithm 3 outputs an unbiased estimator for the
number of k-cliques in the dense regions of G.

By applying the classic Chernoff bound, we can easily derive

that Algorithm 3 is able to produce a 1 − ϵ approximation of the

k-clique count in the dense regions of the graph.

Theorem 4.7. Algorithm 3 returns a 1 − ϵ approximation of the
number of k-cliques in the dense regions ofG with probability 1 − 2σ
if t ≥ 3

ρk ϵ 2
ln 1

σ , where ϵ and σ are small positive values and t is the
sample size.

Note that by Theorem 4.7, the sample size of our algorithm relies

on the k-clique density ρk . Since ρk is often not very small in the

dense regions of a graph, Algorithm 3 is expected to be very efficient

in practice which is also confirmed in our experiments. Below, we

analyze the time and space complexity of Algorithm 3.

Theorem 4.8. Algorithm 3 consumesO((|S | + t)χk +k2t +m+n)
time and O(m + n + χk) space.

Remark. The proposed k-color set sampling algorithm is com-

pletely different from the traditional color coding technique [2, 8, 9]

for k-clique counting. The color coding technique randomly assigns

a color to each node (it is actually not a valid graph coloring), in

which two adjacent nodes may have the same color. However, our

k-color set based sampling algorithm is based on the graph color-

ing technique which requires two adjacent nodes having different

colors. For the color coding technique, the probability of each k-

clique being colored with k different colors is
k !

kk
[2]. With the

increase of k , such a probability decreases dramatically. However,

our technique can ensure that the k-clique of G is a k-color set no
matter what k is. Moreover, unlike color coding, the probability of

sampling k nodes with k different colors fromG (the colored graph)

is nonuniform in our algorithm.

5 CONNECTED k-COLOR SET SAMPLING
Recall that to achieve a 1 − ϵ approximation, the sample size of

Algorithm 3 heavily relies on the k-clique density over the k-color
sets, i.e., ρk (see Theorem 4.7). Although the dense regions of a

graph G often have a relatively high ρk , it may still be very small

in some cases as the k-color sets do not fully capture the clique

property. To improve the effectiveness of the sampling algorithm,

we propose a novel technique which can further boost the k-clique
density by considering the connectivity of the k-color set.

For any k-color set inG , we can observe that it is definitely not a

k-clique if the subgraph induced by the k-color set is not connected.
Clearly, such disconnected k-color sets are unpromising samples

for our sampling algorithm. Therefore, to improve the sampling

performance, a natural question is that can we directly sample

the connected k-color sets from G? In this section, we answer this

question affirmatively by devising a novel k-color path sampling

technique. The insight is that we only sample the k-color set in
which there exists a simple path with length k − 1 in the subgraph

induced by the k-color set. For convenience, we refer to such a

connected k-color set as a k-color path.
Similar to sampling k-color sets in G , we also need to uniformly

sample the k-color paths. Unfortunately, the solutions proposed
in Section 4 are no longer applicable for sampling k-color paths.
Below, we develop a newDP-based sampling technique to uniformly

generate the k-color paths.

5.1 DP-based k-color path sampling

Counting the number of k-color paths.We start by developing

an algorithm to count the number of k-color paths in a graphG . We

assume that the graphG is colored with the color values selected

from [1, χ ]. Based on the color values, we can obtain a color ordering
by sorting the nodes in a non-decreasing ordering of their color

values. Note that we can use the nodes IDs to break ties to obtain

a total ordering. It is worth mentioning that such a color ordering

was used in the k-clique listing algorithms [28]. Clearly, we are able

to construct a DAG ®G by the color ordering, where a directed edge

(u,v) ∈ ®G is obtained by orienting the direction of (u,v) ∈ G if v
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comes after u in the color ordering. Based on the DAG ®G, we can
obtain the following results.

Theorem 5.1. Let ®G be the DAG generated by the color ordering.
Then, any (k − 1)-path in ®G forms a k-color path.

Theorem 5.2. Let ®G be the DAG generated by the color ordering.
Then, any k-clique C = {v1,v2, · · · ,vk } in G is a k-color path in ®G.

Note that a k-color path in ®G does not necessarily form a k-clique
in G . However, the set of k-color paths is clearly a subset of the set

of k-color sets. Thus, the k-clique density over the k-color paths,
denoted by ρp , must be no smaller than the k-clique density over

the k-color sets. To estimate the number of k-cliques inG , we need
to compute ρp and the number of k-color paths as well. Below, we
propose a DP algorithm to achieve this goal.

Let ®Gvi be a subgraph of ®G induced by {vi , ...,vn }. Denote

by H (vi , j) the number of j-paths containing the node vi in ®Gvi .

Clearly, each j-path containing vi in ®Gvi must start from vi , since

the node vi in ®Gvi only has out-neighbors. Thus, the total number

of (k − 1)-paths of ®G , denoted by cntk−1
( ®G,path), can be computed

by the following formula:

cntk−1
( ®G,path) =

∑
vi ∈ ®G

H (vi ,k − 1). (4)

Observe that the second node in each (k − 1)-path containing vi
in ®Gvi must be an out-neighbor of vi . Thus, if we have the count of

the (j − 2)-paths containing vx in ®Gvx for each vx ∈ Nvi ( ®Gvi ), the
count of (j − 1)-paths containing vi in Gvi can be easily obtained.

Specifically, we have the following recursive equation:

H (vi , j) =
∑

vx ∈Nvi (
®Gvi )

H (vx , j − 1). (5)

Initially, we have{
H (vi , 0) = 1, for all i ∈ [1,n],
H (vi , j) = 0, for all i ∈ [1,n], j ∈ [1,k − 1].

(6)

Based on Eqs. (4), (5) and (6), we can easily devise a DP algorithm to

compute cntk−1
( ®G,path) which is detailed in the DPPathCount

procedure of Algorithm 4 (lines 5-12). It is easy to derive that

the time complexity of DPPathCount is O(knχ ), where χ is the

maximum color value of G. This is because the cardinality of the

out-neighbors for any node in ®G is bounded by O(χ ).

Sampling a uniform k-color path. Similar to the DP-based sam-

pling technique developed in Section 4.1, here we also propose

a DP-based sampling algorithm to uniformly sample the k-color
paths. Suppose without loss of generality that there is a randomly

sampled k-color path of ®G starting from a node v , denoted by Pv .

Then, for the second node in Pv , it must be an out-neighbor ofv in ®G .
According to the DP equation (Eq. (5)), the number of (k − 1)-paths

starting from v is equal to the sum of the number of (k − 2)-paths

starting from each node in Nv ( ®G). Therefore, the next node of

a random k-color path starting from v , denoted by u, should be

drawn from Nv ( ®G) with probability
H (u,k−2)

H (v,k−1)
by Eq. (5). We can

recursively perform this sampling procedure to obtain a k-color
path. The detailed implementation of this sampling technique is

shown in Algorithm 4.

Algorithm 4: DPPathSampler (G,k)
Input: A colored graphG = (V , E), and an integer k
Output: A uniformly sampled k -color path

1 ®G ← the DAG generated by the color ordering ofG ;

2 H ← DPPathCount( ®G, k );
3 R ← DPPathSampling( ®G, H, k );
4 return R ;
5 Procedure DPPathCount( ®G, k )
6 H (vi , j) ← 0, for i ∈ [1, n] and j ∈ [1, k − 1];

7 foreach i = 0 to n do H (vi , 0) = 1;

8 foreach j = 1 to k − 1 do
9 for i = 1 to n do
10 for vx ∈ Nvi ( ®G) do
11 H (vi , j) ← H (vi , j) + H (vx , j − 1);

12 return H ;

13 Procedure DPPathSampling( ®G, H, k )
14 R ← ∅;Q ← V ;

15 for i = 0 to k − 1 do
16 cnt←

∑
u∈Q H (u, k − i − 1) ;

17 Set the probability distribution D over the nodes inQ where

p(u) = H (u, k − i − 1)/cnt for each u ∈ Q ;

18 Sample a node u from D ;

19 R ← R ∪ {u };Q ← Nu ( ®G);

20 return R ;

Algorithm 4 first constructs a DAG ®G by the color ordering

(line 1). Then, the algorithm invokesDPPathCount to derive the DP
table H (line 2). After that, Algorithm 4 calls the DPPathSampling
procedure to uniformly sample a k-color path (line 3). Specifically,

when sampling a node u from Nv ( ®G), DPPathSampling needs to

set a probability distribution D over the set Nv ( ®G) based on Eq. (5)

(lines 16-18). After choosing a node u, DPPathSampling turns to

sample the next node from Nu ( ®G) (line 19). The DPPathSampling
procedure terminate when k nodes are sampled.

It is important to note that Algorithm 4 can always obtain a

k-color path if the DAG ®G contains at least one k-color path. This
is because in lines 16-18, if a node u is sampled, then H (u,k − i − 1)

must be larger than 0, indicating that the out-neighborhood Nu ( ®G)
must be non-empty. As a consequence, if there is a k-color path in

®G, the for loop in line 15 of Algorithm 4 will be executed k times

which results in a k-color path. The following theorem shows that

Algorithm 4 can obtain a uniform k-color path.

Theorem 5.3. Algorithm 4 outputs a uniform k-color path.

We analyze the time and space complexity of Algorithm 4 in the

following theorem.

Theorem 5.4. Given an input graphG with n nodes andm edges,
Algorithm 4 takesO(χnk +m) time and usesO(kn +m) space, where
χ is the maximum color value.

5.2 Estimating the k-clique counts
Based on Algorithm 4, we can devise a weighted sampling algorithm

to construct an unbiased estimator to compute the number of k-
cliques. Specifically, we can slightly modify Algorithm 3 by (1)

replacing the DPCount procedure in line 4 of Algorithm 3 with the

DPPathCount procedure, and (2) replacing DPSampling in line 10

of Algorithm 3 with DPPathSampling. Due to the space limit, we

omit the details of this modified algorithm. Similar to Theorems 4.6

and 4.7, the estimator based on the k-color path sampling is also
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Table 1: Datasets

Networks n m δ

webStanford 281,903 1,992,636 71

DBLP 425,957 1,049,866 113

webBerkStan 685,230 6,649,470 201

webGoogle 916,428 4,322,051 44

Skitter 1,696,415 11,095,298 111

Orkut 3,072,627 117,185,083 253

LiveJournal 4,036,538 34,681,189 360

Friendster 65,608,366 1,806,067,135 304

unbiased, and the sample size can also be bounded by using the

Chernoff bound. Moreover, it is easy to check that the sample size

is no larger than that of Algorithm 3, because ρp ≥ ρk .

For the time complexity, such amodified algorithm takesO(|S |δ2k)
to compute the DP tables (i.e., H ) for all nodes in S (because the in-

put graphG(Nv ( ®G)) for the DPPathCount procedure has at most δ
nodes), and consumesO(δk+k2) to sample a k-color path. Thus, the
total time complexity of the algorithm isO(|S |δ2k+(δk+k2)t+m+n),
where O(m + n) is taken for computing the graph coloring. The

space overhead of the modified algorithm isO(m+n+δk), because
the DP table takes O(δk) space.

6 EXPERIMENTS
6.1 Experimental setup
We compare the proposed algorithms with three state-of-the-art

k-clique counting algorithms which are kClist [15, 28], PIVOTER
[24], TuranShadow [23]. The kClist algorithm is an exact k-clique
counting algorithm which is based on k-clique enumeration [15].

Note that the original kClist algorithm is based on the degeneracy

ordering. Li et al. [28] proposed an improved version based on a hy-

brid of the degeneracy and color ordering. In our experiment, kClist
denotes such an improved version. PIVOTER and TuranShadow are

the state-of-the-art exact and approximate k-clique counting algo-

rithms respectively. Both PIVOTER and TuranShadow were pro-

posed by Jain and Seshadhri [23, 24]. PEANUTS [25] is an improved

version of TuranShadow by the technique of Prefixed-Shadow, thus

we use PEANUTS as the baseline instead of TuranShadow. The C++
codes of all these three algorithms are publicly available, thus we

use their implementations in our experiments. For our algorithms,

we implement DPColor and DPColorPath. DPColor denotes Algo-
rithm 1 integrated with the k-color set sampling algorithm (Al-

gorithm 2 and Algorithm 3), while DPColorPath is Algorithm 1

equipped with the k-color path sampling technique (Algorithm 4).

Both DPColor and DPColorPath are implemented in C++. All al-

gorithms are evaluated on a PC with two 2.1 GHz Xeon CPUs (16

cores in total) and 128GB memory running CentOS 7.6.

Datasets. We use 8 large real-life datasets in our experiments. Ta-

ble 1 summarizes the detailed statistic information of all datasets.

The last column of Table 1 denotes the degeneracy of the graph.

The webStanford, webBerkStan, and webGoogle datasets are web
graphs. DBLP is a co-authorship network, and Skitter is an internet

graph. Orkut, LiveJournal, and Friendster are social networks. All
datasets are downloaded from (snap.stanford.edu).

6.2 Experimental results
Runtime of different algorithms. In this experiment, we com-

pare the running time of different algorithms on all datasets. Note

that for each approximation algorithm (PEANUTS, DPColor, and
DPColorPath), we record its running time when the algorithm

achieves a 0.1% relative error. Here the relative error is computed

by | f − ˆf |/f , in which f is the exact k-clique count and ˆf is the

estimated count. For all algorithms, if they cannot terminate within

5 hours, we set their running time to “INF". Fig. 1 shows the running

time of different algorithms with varying k .
We first compare our algorithms with kClist and PIVOTER. As

can be seen, bothDPColor andDPColorPath are significantly faster
than kClist and PIVOTER on most datasets with varying k . The
kClist algorithm is generally intractable for large k on all datasets.

On most datasets, DPColorPath is around one order of magnitude

faster than PIVOTER. The hardest instance is the LiveJournal graph,
on which PIVOTER only obtains the number of 4-cliques within 5

hours, whereas DPColorPath takes around 20 seconds to achieve a

0.1% relative error (DPColorPath can achieve at least three orders

of magnitude faster than PIVOTER on LiveJournal). Note that since
both kClist and PIVOTER are intractable on LiveJournal when k ≥
6, we use the exact k-clique count obtained from [1], where k ≤ 8,

to compute the relative errors for the approximation algorithms.

Moreover, as reported in [1], the running time of such a GPU-

parallelized PIVOTER algorithm using 5120 CUDA Cores is 6,851

seconds for k = 8, while our sequential DPColorPath (DPColor)
take around 20 seconds to obtain a very accurate k-clique count.
These results indicate that our algorithms are extremely efficient

for k-clique counting.
By comparing our algorithms with PEANUTS, we can see that

bothDPColor andDPColorPath are consistently faster than PEANUTS
on all datasets with varying k . On most datasets, DPColorPath
is orders of magnitude faster than PEANUTS. For example, on

DBLP, both DPColor and DPColorPath take around 0.1 second,

while PEANUTS consumes more than 1 seconds for most k val-

ues. In addition, on Orkut and Friendster, PEANUTS and DPColor
cannot achieve a desired relative error within 5 hours for large k val-

ues, while DPColorPath is still very efficient on these two datasets.

For our algorithms, DPColorPath is generally faster than DPColor.
Moreover, the performance of DPColorPath is much more stable

than DPColor on all datasets. These results confirm our theoretic

analysis in Sections 4 and 5.

Relative errors with varying sample size. Fig. 2 shows the rel-
ative errors of three algorithms with varying k on webStanford
and LiveJournal. Similar results can also be observed on the other

datasets. As shown in Fig. 2, the relative error of DPColorPath is

consistently lower than those of DPColor and PEANUTS with the

same sample size. In general, the relative errors of all algorithms

decrease with the sample size increases. Moreover, we can see that

DPColorPath obtain a 10
−5

relative error on all datasets when the

sample size is 10
8
, indicating that DPColorPath can achieve very

high accuracy using a reasonable number of samples. These results

further confirm the efficiency and effectiveness of our techniques.

K-clique density. In this experiment, we evaluate the k-clique
densities over the k-color sets (ρk ) and the k-color paths (ρp ) in the

dense regions of the graph, respectively. The results on all datasets

are reported in Table 2. As expected, ρp is no larger than ρk on all

datasets. Moreover, both ρk and ρp can achieve a very high value

on most datasets. For example, on DBLP and webBerkStan, both
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Figure 1: Running time of different algorithms (the relative errors for PEANUTS, DPColor, DPColorPath are set to 0.1%)
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Figure 2: Relative errors with varying sample size (k = 8)
Table 2: The k-clique densities (ρk /ρp ) in the dense regions
(%)

Networks k = 3 k = 8 k = 12 k = 15

webStanford 83.0/100.0 70.8/77.7 54.3/61.2 45.8/53.1

DBLP 97.2/100.0 100.0/100.0 100.0/100.0 100.0/100.0

webBerkStan 94.7/100.0 99.9/100.0 100.0/100.0 100.0/100.0

webGoogle 94.6/100.0 91.2/94.4 86.1/87.8 84.7/85.7

Skitter 42.3/100.0 5.3/26.4 0.7/6.4 0.1/2.3

Orkut 20.5/100.0 0.0/2.6 0.0/0.2 0.0/0.0002

LiveJournal 54.3/100.0 80.4/91.0 -/- -/-

Friendster 10.1/100.0 0.0/18.1 0.0/55.6 0.0/52.2

ρk and ρp are near to 100%. In general, both ρk and ρp decreases

with k increases. Nevertheless, on most datasets, ρp is always very

large even when k = 15. These results further confirm that the

proposed techniques can achieve high accuracy on real-life graphs.

Memory overheads. Fig. 3 shows the memory usages of various

algorithms on webBerkStan and LiveJournal for k = 8. The results

for the other k values and datasets are consistent. As expected, the

space consumption of PEANUTS is significantly higher than the

other algorithms, as it needs to store the Tuŕan Shadow structure.

The space overheads of our algorithms and PIVOTER are compara-

ble, while kClist consumes slightly more space than our algorithms.

These results demonstrate that our algorithms are space efficient.

Parallel performance of our algorithms. In this experiment, we

evaluate the parallel performance of our algorithms. To this end, we

implement the parallel versions for bothDPColor andDPColorPath

web-BerkStan                   com-LiveJournal0

1000

2000

3000

4000

5000

6000

M
em

or
y 

(M
B)

graph size
kClist
PIVOTER
PEANUTS
DPColor
DPColorPath

Figure 3: Memory usage of various algorithms (k = 8)

Table 3: Runtime of our parallel algorithms (k = 8, t = 5×10
6)

Threads DPColor (sec.) DPColorPath (sec.)
LiveJournal Friendster LiveJournal Friendster

1 24.8 2481.5 28.4 2132.2

4 7.1 650.3 7.5 559.6

8 4.3 341.6 3.9 293.3

12 2.7 244.4 2.7 210.3

16 2.1 196.5 2.1 171.9

using OpenMP. We fix the sample size as 5 × 10
6
to evaluate the

runtime of DPColor and DPColorPath on the two largest datasets.

The results are shown in Table 3. As can be seen, both DPColor and
DPColorPath perform very well. Both DPColor and DPColorPath
can achieve 12× ∼ 14× speedups when using 16 threads. This result

indicates a high degree of parallelism of our algorithms.

7 CONCLUSION
In this paper, we propose a time and space efficient framework

for k-clique counting. Our framework first divides the graph into

sparse and dense regions based on the average degree. Then, for the

sparse regions, we use the state-of-the-art PIVOTER algorithm to

compute the exact number of k-cliques. For the dense regions, we
develop two novel DP-based k-color set and k-color path sampling

techniques to estimate the k-clique count, respectively. Extensive
experiments on 8 real-life graphs show that our algorithms are very

efficient and accurate.

1198



Lightning Fast and Space Efficient k -clique Counting WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

ACKNOWLEDGMENTS
This work was partially supported by (i) National Key Research

and Development Program of China 2020AAA0108503, (ii) NSFC

Grants 62072034, U1809206, and 61772346. Rong-Hua Li is the cor-

responding author of this paper.

REFERENCES
[1] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun Xiong, and Wen-Mei W.

Hwu. 2021. K-Clique Counting on GPUs. CoRR abs/2104.13209 (2021).

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1994. Color-coding: a new method

for finding simple paths, cycles and other small subgraphs within large graphs.

In STOC.
[3] Balabhaskar Balasundaram and Sergiy Butenko. 2006. Graph Domination, Col-

oring and Cliques in Telecommunications. In Handbook of Optimization in
Telecommunications. Springer, 865–890.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[5] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient

semi-streaming algorithms for local triangle counting in massive graphs. In KDD.
[6] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016).
[7] J. W. Berry, B. Hendrickson, R. A. Laviolette, and C. A. Phillips. 2011. Tolerating

the Community Detection Resolution Limit with EdgeWeighting. Physical Review
E Statistical Nonlinear & Soft Matter Physics 83, 5 (2011), 056119.

[8] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2018. Motif Counting Beyond Five Nodes. ACM Trans. Knowl. Discov.
Data 12, 4 (2018), 48:1–48:25.

[9] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast

Motif Counting via Succinct Color Coding and Adaptive Sampling. Proc. VLDB
Endow. 12, 11 (2019), 1651–1663.

[10] S Ronald Burt. 2004. Structural holes and good ideas. Amer. J. Sociology 110, 2

(2004), 349–399.

[11] Keren Censor-Hillel, Yi-Jun Chang, François Le Gall, and Dean Leitersdorf. 2021.

Tight Distributed Listing of Cliques. In SODA.
[12] Lijun Chang and Lu Qin. 2019. Cohesive Subgraph Computation Over Large

Sparse Graphs. In ICDE.
[13] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing

Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.
[14] Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its

applications. In KDD.
[15] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in

Sparse Real-World Graphs. In WWW.

[16] Talya Eden, Dana Ron, and C. Seshadhri. 2018. On approximating the number of

k-cliques in sublinear time. In STOC.
[17] Talya Eden, Dana Ron, and C. Seshadhri. 2020. Faster sublinear approximation

of the number of k-cliques in low-arboricity graphs. In SODA.
[18] Katherine Faust. 2010. A puzzle concerning triads in social networks: Graph

constraints and the triad census. Soc. Networks 32, 3 (2010), 221–233.
[19] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. 2015. Clique Counting

in MapReduce: Algorithms and Experiments. ACM J. Exp. Algorithmics 20 (2015),
1.7:1–1.7:20.

[20] Lukas Gianinazzi, Maciej Besta, Yannick Schaffner, and Torsten Hoefler. 2021.

Parallel Algorithms for Finding Large Cliques in Sparse Graphs. In SPAA.
[21] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2014.

Ordering heuristics for parallel graph coloring. In SPAA.
[22] Lin Hu, Lei Zou, and Yu Liu. 2021. Accelerating Triangle Counting on GPU. In

SIGMOD.

[23] Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating

Clique Counts Using Turán’s Theorem. In WWW.

[24] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique

Counting. In WSDM.

[25] Shweta Jain and C. Seshadhri. 2020. Provably and Efficiently Approximating Near-

cliques using the Turán Shadow: PEANUTS. InWWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020. 1966–1976.

[26] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and Provable

Method for Estimating 4-Vertex Subgraph Counts. In WWW.

[27] Matthieu Latapy. 2008. Main-memory triangle computations for very large

(sparse (power-law)) graphs. Theor. Comput. Sci. 407, 1-3 (2008), 458–473.
[28] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. 13, 11 (2020),
2536–2548.

[29] Kazuhisa Makino and Takeaki Uno. 2004. New Algorithms for Enumerating All

Maximal Cliques. In 9th Scandinavian Workshop on Algorithm Theory.
[30] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[31] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D Chklovskii, and U. Alon. 2010.

Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594
(2010), 763–764.

[32] Mark Ortmann and Ulrik Brandes. 2014. Triangle Listing Algorithms: Back from

the Diversion. In ALENEX.
[33] Noujan Pashanasangi and C. Seshadhri. 2020. Efficiently Counting Vertex Orbits

of All 5-vertex Subgraphs, by EVOKE. In WSDM.

[34] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: Efficiently

Counting All 5-Vertex Subgraphs. In WWW.

[35] Natasa Przulj, Derek G. Corneil, and Igor Jurisica. 2004. Modeling interactome:

scale-free or geometric? Bioinform. 20, 18 (2004), 3508–3515.
[36] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014.

Graft: An Efficient Graphlet Counting Method for Large Graph Analysis. IEEE
Trans. Knowl. Data Eng. 26, 10 (2014), 2466–2478.

[37] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In

WWW.

[38] Comandur Seshadhri and Srikanta Tirthapura. 2019. Scalable Subgraph Counting:

The Methods Behind The Madness. In WWW.

[39] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large

Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640.
[40] Ancy Sarah Tom, Narayanan Sundaram, Nesreen K. Ahmed, Shaden Smith, Stijn

Eyerman, Midhunchandra Kodiyath, Ibrahim Hur, Fabrizio Petrini, and George

Karypis. 2017. Exploring optimizations on shared-memory platforms for parallel

triangle counting algorithms. In HPEC.
[41] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time

complexity for generating all maximal cliques and computational experiments.

Theor. Comput. Sci. 363, 1 (2006), 28–42.
[42] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

WWW.

[43] Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos Faloutsos.

2009. DOULION: counting triangles in massive graphs with a coin. In KDD.
[44] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng,

John C. S. Lui, Don Towsley, Jing Tao, and Xiaohong Guan. 2018. MOSS-5: A Fast

Method of Approximating Counts of 5-Node Graphlets in Large Graphs. IEEE
Trans. Knowl. Data Eng. 30, 1 (2018), 73–86.

[45] Hao Yin, Austin R. Benson, and Jure Leskovec. 2017. Higher-order clustering in

networks. Physical Review E 97, 5 (2017), 052306.

[46] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. Effective

and Efficient Dynamic Graph Coloring. Proc. VLDB Endow. 11, 3 (2017), 338–351.

1199



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren Wang

Table 4: The ratio of the k-cliques in the sparse regions.

Networks k = 3 k = 8 k = 12 k = 15

webStanford 6.15% 0.01% 0.00% 0.00%

DBLP 33.11% 0.00% 0.00% 0.00%

webBerkStan 3.80% 0.00% 0.00% 0.00%

webGoogle 11.63% 6.47% 0.69% 0.36%

Skitter 19.57% 0.03% 0.00% 0.00%

Orkut 6.47% 0.07% 0.00% 0.00%

LiveJournal 9.30% 0.00% 0.00% 0.00%

Friendster 26.15% 0.30% 0.01% 0.00%

8 SUPPLEMENTARY MATERIALS
8.1 Additional experiments

The number of k-cliques in the sparse regions. In this experi-

ment, we evaluate the number of k-cliques in the sparse regions of

a graph on all datasets. Note that a node’s neighborhood-induced

subgraph is called a sparse region of a graph if the average degree of

such a subgraph is smaller than k . Clearly, if the sparse regions have
less number of k-cliques, then the PIVOTER algorithm should be

more efficient. Table 4 reports our results on all datasets. As can be

seen, for a relatively large k , the number of k-cliques in the sparse

regions of all datasets only accounts for a small portion of the total

number of k-cliques. On most datasets, such a ratio usually does not

exceed 0.1%. These results indicate that the proposed framework,

which integrates both PIVOTER and sampling techniques, can be

very efficient for handling real-life graphs.

Trade-off between accuracy and sample size. Table 5 shows the
sample sizes needed by TuranShadow, DPColor and DPColorPath
to meet a desired relative error given that k = 8. The results are

consistent when setting k to other values. As expected, the sample

size required by different algorithms increases with the relative

error decreases. Both DPColor and DPColorPath requires less sam-

ples than TuranShadow to achieve a desired relative errors on most

datasets. Moreover, we can see that in most settings, the sample

size of DPColorPath is one order of magnitude less than those of

TuranShadow and DPColor. For example, to achieve a 0.01% rela-

tive error on LiveJournal, DPColorPath only needs 2× 10
5
samples,

whereas TuranShadow and DPColor require 3 × 10
7
and 7 × 10

6

samples respectively. These results further confirm the superiority

of the proposed k-color path sampling technique.

8.2 Missing proofs

The proof of lemma 4.3. On the one hand, it is easy to verify that

there are at most k colors outputted by the DPSampling procedure,
since p(i,0) = 0 and DPSampling will terminate immediately when

j = 0. On the other hand, by Eq. (3), we can derive that p(i,i) = 1.

This is because F (i − 1, i) = 0 by definition, thus 1 − p(i,i) = F (i −
1, i)/F (i, i) = 0. As a result, the probability of sampling a color

i with p(i,i) is always 1, thus there are at least k colors that are

sampled by DPSampling if χ ≥ k . Putting it all together, the lemma

is established. □

The proof of Theorem 4.4. Let X be the event of a random k-
color class of G sampled by DPSampling. For each color j from 1

to χ , let Yj be an indicator random variable, which is equal to 1 if

the color j is selected in the event X , otherwise it is equal to 0. Let

Pr(X ) be the occurrence probability of the event X . Then, we have

the following equation:

Pr(X ) = Pr((

χ∑
i=1

Yi ) = k). (7)

Recall that DPSampling draws k colors following the decreasing

order of the color values (i.e., from χ to 1). For each color j ∈ [1, χ ],
the probability of selecting the color j in Gi is p(i, j). Assume that

the sampled k-color class of G is C = {c1, ..., ck }, where each ci is
a color value ofG and c1 > c2 > · · · > ck . Clearly, a k-color classC
partitions the interval [1, χ ] into atmost 2k+1 sub-intervals as {[c1+

1, χ ], [c1, c1], [c2+1, c1−1], · · · , [ck+1, ck−1
−1], [ck , ck ], [1, ck−1]}.

Note that DPSampling only selects a color in the sub-intervals

[ci , ci ] for every i = 1, · · · ,k , and no color is selected in the other

sub-intervals. Therefore, the probability of Pr((
∑χ
i=1

Yi ) = k) can
be computed by

F (χ − 1,k)

F (χ ,k)
×
F (χ − 2,k)

F (χ − 1,k)
× · · · ×

F (c1,k)

F (c1 + 1,k)
×
ac1
× F (c1 − 1,k − 1)

F (c1,k)

×
F (c1 − 2,k − 1)

F (c1 − 1,k − 1)
× · · · ×

F (c2,k − 1)

F (c2 + 1,k − 1)
×
ac2
× F (c2 − 1,k − 2)

F (c2,k − 1)

× · · · ×
F (ck , 1)

F (ck + 1, 1)
×
ack × F (ck − 1, 0)

F (ck , 1)

=
ac1
× ac2

× · · · × ack
F (χ ,k)

.

(8)

After obtaining a k-color class C , the algorithm further samples k
nodes with k different colors inC fromG . Let Pr(k-color set) be the
probability of sampling a k-color set from G. Then, we have

Pr(k-color set) = Pr(k nodes with different colors|X ) × Pr(X )

=
1

ac1
× ac2

× · · · × ack
×
ac1
× ac2

× · · · × ack
F (χ ,k)

=
1

F (χ ,k)
=

1

cntk (G, color )
(9)

By Eq. (9), each k-color set is uniformly sampled, thus the theorem

is established. □

The proof of Theorem 4.5. Clearly, the time complexity of the

DP procedure for counting the number of k-color sets is O(χk). In
the DPSampling procedure, we can randomly choose a node with

color i in constant time if the color groups are obtained (line 17).

The total time costs of the DPSampling procedure are bounded

by O(χ + k). As a result, the time complexity of Algorithm 2 is

O(χk). For the space complexity, Algorithm 2 only requires O(χk)
additional space to store the DP table F and the probabilities p. □

The proof of Theorem 4.6. Let Xi = 1 if the ith sampled k-color
set is a k-clique, otherwise Xi = 0. Observe that

Pr(Xi = 1) =
∑
v ∈S
[Pr(choose v f rom D)

× Pr(choose a clique f rom G(Nv ( ®G)))].

(10)

In the summation, the former probability is
Fv (χ,k−1)∑

v∈S cntk (G(Nv ( ®G)),color )
,

and the latter is exactly
cntk (G(Nv ( ®G)),clique)

Fv (χ,k−1)
. Thus, Pr (Xi = 1) =
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Table 5: Sample sizes vs. relative errors of TuranShadow, DPColor and DPColorPath (k = 8)

.

Networks ϵ = 1% ϵ = 0.1% ϵ = 0.01%

TuranShadow DPColor DPColorPath TuranShadow DPColor DPColorPath TuranShadow DPColor DPColorPath

webStanford 5e10
3

1e10
4

2e10
3

1e10
5

1e10
5

7e10
4

1e10
8

5e10
6

1e10
6

DBLP 1e10
1

1e10
1

1e10
1

1e10
1

1e10
1

1e10
1

5e10
3

1e10
1

1e10
1

webBerkStan 1e10
3

1e10
1

1e10
1

1e10
3

1e10
1

1e10
1

5e10
5

5e10
5

2e10
5

webGoogle 1e10
4

1e10
3

1e10
2

1e10
5

3e10
4

2e10
4

4e10
7

4e10
5

8e10
5

Skitter 1e10
3

3e10
5

1e10
4

1e10
6

1e10
7

5e10
5

2e10
7

5e10
7

4e10
6

Orkut 1e10
6

>1e10
8

3e10
6

5e10
6

>1e10
8

3e10
7

1e10
7

>1e10
8

8e10
7

LiveJournal 1e10
4

1e10
4

3e10
3

1e10
5

5e10
6

1e10
4

3e10
7

7e10
6

2e10
5

Friendster − >1e10
8

5e10
6 − >1e10

8
1e10

7 − >1e10
8

1e10
7

∑
v∈S cntk (G(Nv ( ®G)),clique)∑
v∈S cntk (G(Nv ( ®G)),color )

. This implies that the probability of sam-

pling a k-clique is exactly the k-clique density in the dense regions.

By the linearity of expectation, we have

E[cntKCol ×

∑
i≤t Xi
t
] =

∑
v ∈S

cntk (G(Nv ( ®G)), color ) ×

∑
i≤t E[Xi ]

t

=
∑
v ∈S

cntk (G(Nv ( ®G)), clique).

(11)

Therefore, Algorithm 3 returns an unbiased estimator of the k-
clique count in the dense regions of G. □

The proof of Theorem 4.7. Denote by ρ̂k the estimator of the

k-clique density (line 13 of Algorithm 3). Since our estimator is

unbiased, we have E[ρ̂k ] = ρk . Then, the expected number of k-
cliques in the t samples is E[ρ̂k t] = ρk t . Based on the Chernoff

bound, we easily obtain the following results:

Pr(ρ̂k t ≤ (1 − ϵ)ρk t) ≤ exp(−
ϵ2ρk t

2

) ≤ exp(−
ϵ2ρk t

3

), (12)

Pr(ρ̂k t ≥ (1 + ϵ)ρk t) ≤ exp(−
ϵ2ρk t

3

). (13)

Further, we have:

Pr(
|ρ̂k − ρk |

ρk
≥ ϵ) ≤ 2 exp(−

ϵ2ρk t

3

). (14)

Let exp(−
ϵ 2ρk t

3
) ≤ σ . Then, we can derive that t ≥ 3

ρk ϵ 2
ln

1

σ . This

completes the proof. □

The proof of Theorem 4.8. For the time complexity, Algorithm 3

takes O(m + n) time to obtain a feasible graph coloring. Then, it

consumes O(|S |χk) time to compute Fv for each v ∈ S . After that,
to draw a k-color set, the algorithm takes O(χk) time and O(k2)

time to check whether it is a clique. Thus, the total time used in the

k-color set sampling stage is O(t(χk + k2)). As a consequence, the

time complexity of Algorithm 3 isO((|S | + t)χk +m +n + k2t). For
the space complexity, the algorithm needs to store the graphG and

the colors which takes O(m + n) space in total. Additionally, the

algorithm uses O(χk) space to store the DP table when sampling a

k-color set. Note that the algorithm does not store all the DP tables

for all samples. Thus, the total space overhead of Algorithm 3 is

O(m + n + χk). □

Theproof of Theorem5.1. Let P = {(v1,v2), (v2,v3), · · · , (vk−1
,vk )}

be a (k−1)-path in ®G . By the color ordering, we have c(vi ) ≤ c(vi+1)

for every i ∈ [1,k − 1], where c(vi ) denotes the color value of

vi . Since any two adjacent nodes have different colors, we have

c(vi ) , c(vi+1) for each i ∈ [1,k − 1]. As a result, the path S is a

k-color path. □

The proof of Theorem 5.2. LetC = {v1,v2, · · · ,vk } be a k-clique
inG . Clearly, the nodes inC have different colors. Suppose without

loss of generality that c(v1) < c(v2), · · · , c(vk ). Since ®G is generated

by the color ordering, theremust exist a path {(v1,v2), · · · , (vk−1
,vk )}

in ®G which also forms a valid k-color path. □

The proof of Theorem 5.3. Consider a path {v1,v2, · · · ,vk }. Let
X be the event of this path being sampled by Algorithm 4. Denote by

Yi the event of a nodevi appearing in the path. Clearly, the probabil-

ity of the first nodev1 being sampled is Pr(Y1) =
H (v1,k−1)∑
u∈V H (u,k−1)

. Ob-

serve that in the ith -iteration of the for loop (line 15), the distribu-

tion D for node vi is constructed from Nvi−1
( ®G). The node vi being

sampled in the for loop can be represented as an eventYi |Yi−1 (con-

ditioned on Yi−1), thus we have Pr(Yi |Yi−1) =
H (vi ,k−i)∑

u∈Nvi−1
( ®G) H (u,k−i)

.

As a consequence, we have

Pr(X ) = Pr(Y1) × Pr(Y2 |Y1) × · · · × Pr(Yk |Yk−1
)

=
H (v1,k − 1)∑
u ∈V H (u,k − 1)

×
H (v2,k − 2)∑

u ∈Nv
1
( ®G) H (u,k − 2)

×

· · · ×
H (vk , 0)∑

u ∈Nvk−1
( ®G) H (u, 0)

=
1∑

u ∈V H (u,k − 1)
.

(15)

Since the number of k-color paths inG is equal to

∑
u ∈V H (u,k −1),

each k-color path is sampled uniformly. □

Theproof of Theorem5.4. First, the algorithm consumesO(m+n)
time to obtain a DAG. Second, as above analyzed, theDPPathCount
procedure takes O(nkχ ) time. Third, the DPPathSampling proce-

dure uses O(n + χk) time. This is because setting the probability

distribution for the first node takes O(n) time, while for the other

nodes it takes at mostO(χ ) time. Thus, the total time complexity of

Algorithm 4 isO(χnk +m). For the space complexity, the algorithm

needs to store the DAG and the DP table H which uses O(nk +m)
space in total. □

8.3 Further related work
K-clique and triangle counting. Except the practical algorithms

introduced above, there also exist some theoretical studies on the
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k-clique counting problem [11, 16, 17, 20]. Most of these theoretical

work focus mainly on devising an algorithm to achieve a better

worst-case time complexity. The practical performance of such al-

gorithms is often much worse than the state-of-the-art practical

algorithms [28]. Triangle is a specific k-clique for k = 3. The prob-

lem of counting triangles in a graph has a long history. There are

many algorithms in the literature [5, 14, 27, 32, 43]. For example,

both [27] and [32] are ordering-based exact triangle counting algo-

rithms. Chu and Cheng [14] developed an I/O-efficient algorithm

exact algorithm for triangle listing. Tsourakakis et al. [43] proposed

an edge sampling algorithm to approximate the number of triangles

in a graph. Becchetti et al. [5] presented an approximate triangle

counting algorithm in the semi-streaming model. Tom et al. [40]

and Hu et al. [22] developed efficient GPU-parallel algorithms for

triangle counting in the shared-memory many-core platforms.

Motif counting.Many exact and sampling-based approximation

algorithms have been proposed for motif counting [8, 9, 33, 34, 36];

and some of them can also be used to count k-cliques. Notable
example include the color coding based algorithms [8, 9], and edge

sampling based algorithms [36]. However, as shown in [23], all these

algorithms cannot scale for large graphs and also their practical

performance is worse than TuranShadow.
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